On recursive computation of coprime factorizations of rational matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Coprime Factorizations of Rational Matrices

We propose a numerically reliable state space algorithm for computing coprime factorizations of rational matrices with factors having poles in a given stability domain. The new algorithm is based on a recursive generalized Schur technique for poles dislocation by means of proportional-derivative state feedback. The proposed algorithm is generally applicable regardless the underlying descriptor ...

متن کامل

Recursive computation of coprime factorizations

We propose general computational procedures based on descriptor state-space realizations to compute coprime factorizations of rational matrices with minimum degree denominators. Enhanced recursive pole dislocation techniques are developed, which allow to successively place all poles of the factors into a given “good” domain of the complex plane. The resulting McMillan degree of the denominator ...

متن کامل

Computation of Normalized Coprime Factorizations of Rational Matrices

We propose a new computational approach based on descriptor state space algorithms for computing normalized coprime factorizations of arbitrary rational matrices. The proposed approach applies to both continuousand discrete-time rational transfer-function matrices and shows that each rational matrix possesses a normalized coprime factorization with proper factors. The new method is conceptually...

متن کامل

Generalized Schur Methods to Compute Coprime Factorizations of Rational Matrices

Numerically reliable state space algorithms are proposed for computing the following stable coprime factorizations of rational matrices factorizations with least order denominators factorizations with inner denominators and factorizations with proper stable factors The new algorithms are based on a recursive generalized Schur algorithm for pole assignment They are generally applicable regardles...

متن کامل

Computation of Inner-Outer Factorizations of Rational Matrices

In this paper we propose a new numerically reliable computational approach to determine the inner-outer factorization of a rational transfer matrix G of a linear descriptor system. In contrast to existing computationally involved “one-shot” methods which require the solution of Riccati or generalized Riccati equations, the new approach relies on an efficient recursive zeros dislocation techniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2021

ISSN: 0024-3795

DOI: 10.1016/j.laa.2020.01.030